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1. Introduction

Piezoelectric transducers, based on piezoelectric phenomenon [1] which converts electric signals
into mechanical vibrations and vice versa, are used as electromechanical sensors or actuators in
various fields [2]. Most transducers use longitudinal vibration in the thickness direction of a plate
or a disc. In rare cases of disc use, the piezoelectric torsional transducer uses torsional vibration
with shear motion in the circumferential direction [3].

On the other hand, piezoelectric cylindrical transducers have been introduced in several forms.
A transducer polarized in the axial direction undergoes axial motion under the electric drive in the
radial thickness direction, and is used as an aligner or a translator, as for example in a scanning
tunnelling microscope [2]. A transducer polarized in the circumferential direction undergoes radial
vibrations resulting from circumferential expansion and compression [4].

This paper deals with the radial vibration of piezoelectric cylindrical transducers polarized in
the radial direction. The behaviors of these transducers have been studied in some different point
of view [5,6]. Transducers polarized in the circumferential direction [4] are different from these
transducers, even though they both vibrate radially. The transducers considered in this paper were
installed on a pipe, and axisymmetric waves in the pipe wall were generated or detected [7]. The
purpose of this paper is to establish a formula for calculating the piezoelectric natural frequency
of these transducers.

First of all, the differential equations of piezoelectric radial motion were derived in terms of
radial displacement and electric potential. The characteristic equation of radial vibration was
obtained by applying mechanical and electric boundary conditions. Theoretical calculations of the
fundamental natural frequency were compared with the experimental observations for
transducers of several sizes. The dependence of the piezoelectric natural frequency on the radius
and thickness of the piezoelectric cylinder is discussed.

ARTICLE IN PRESS

*Corresponding author. Tel.: +82-2-820-0662; fax: +82-2-820-0668.

E-mail address: jokim@ssu.ac.kr (J.O. Kim).

0022-460X/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jsv.2003.11.015



The equations in the analysis were simplified to include radial displacement and radial variables
only, and the material properties were simplified to be isotropic ones. This simplification restricts
the validity of the analysis to the materials whose anisotropic factors are close to 1, but it allows
convenient prediction of the radial vibration characteristics according to the geometry of the
piezoelectric cylinders. Similar simplification is found in other literature dealing with a
piezoelectric sphere [8].

2. Theoretical analysis

Electromechanical relationships were determined for a piezoelectric disc vibrating in the
thickness direction [9]. A similar scheme is introduced for modelling the piezoelectric cylindrical
transducer, schematically shown in Fig. 1. The piezoelectric cylinder has uniform electrodes on the
inner surface of radius Ri and on the outer surface of radius Ro: Radial vibrations in the cylinder
can be described in terms of the axisymmetric radial displacement uðr; tÞ and electric potential
fðr; tÞ; both functions of the radial coordinate r and time t:

The components of radial stress sr and circumferential stress sy in the piezoelectric cylinder are
expressed as the stress components in an elastic cylinder [10] with the effect of the radial
piezoelectricity [9] as follows:
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Piezoelectric materials are anisotropic, but they can be approximated to elastically isotropic when
the elastic anisotropy factor is close to 1. The radial component of electric displacement Dr;
incorporating piezoelectric effect, is expressed as follows:

Dr ¼ e
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: ð3Þ
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Fig. 1. Schematic diagram of a cylindrical transducer.
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Here, l and G are Lam!e elastic constants, which are expressed in terms of Young’s modulus E and
Poisson ratio n as l ¼ En=ð1þ nÞð1� 2nÞ and G ¼ E=2ð1þ nÞ: In addition, e ð¼ d33=sE

33Þ is the
piezoelectric stress constant and e the dielectric permittivity [9].

Inserting Eqs. (1)–(3) into the equations of motion and the electrostatic equation in cylindrical
co-ordinates yields the following equations:

@2u

@r2
þ

1

r

@u

@r
�

u

r2
þ

1

EL

e2

e
u

r2
¼

1

c2L

@2u

@t2
; ð4Þ

@2f
@r2

þ
1

r

@f
@r

� �
¼

e

e
@2u

@r2
þ

1

r

@u

@r

� �
; ð5Þ

where cL ð¼ ½EL=r�1=2Þ in Eq. (4) is the propagation speed of the longitudinal wave, r is the mass
density, and EL ¼ lþ 2G þ e2=e:

When the voltage applied to the electrodes is a harmonic function of time t with frequency o;
the displacement u and the electric potential f are regarded as harmonic functions of time with the
same frequency. Therefore, uðr; tÞ and fðr; tÞ can be expressed through the separation of variables
as follows:

uðr; tÞ ¼ *uðrÞeiot; fðr; tÞ ¼ *fðrÞeiot: ð6a;bÞ

Substituting Eqs. (6a) and (6b) into Eqs. (4) and (5) provides the following governing
equations:

r2
d2 *u

dr2
þ r

d *u

dr
þ ðk2r2 � p2Þ *u ¼ 0; ð7Þ

d

dr
r
d *f
dr

 !
¼

e

e
d

dr
r
d *u

dr

� �
; ð8Þ

where k ð¼ o=cLÞ is the wave number, and p is a constant, defined as follows:

p2 ¼ 1�
1

EL

e2

e
: ð9Þ

The solution of Eq. (7) has the following form:

*uðrÞ ¼ AJpðkrÞ þ BJ�pðkrÞ: ð10Þ

After inserting Eq. (10) into Eq. (8), the solution of *fðrÞ is obtained as follows:

*fðrÞ ¼
e

e
½AJpðkrÞ þ BJ�pðkrÞ� þ a ln r þ b: ð11Þ

The unknown constants A;B; a; and b are determined according to the boundary conditions.
As shown in Fig. 1, the piezoelectric cylinder has an inner radius of Ri and an outer radius Ro:

The transducer is driven by an electric voltage V0e
iot applied to its inner and outer surfaces.

Boundary conditions are established as follows:

*sr ¼ 0 and *f ¼ 0 at r ¼ Ri; ð12a;bÞ

*sr ¼ 0 and *f ¼ V0 at r ¼ Ro: ð12c;dÞ
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Since the radial stress sr ð¼ *sðrÞeiotÞ has the formula as stated in Eq. (1), applying boundary
conditions (12a)–(12d) to Eqs. (10) and (11) yields a set of equations with unknown constants
A;B; a; and b:

Eliminating the constants a and b in the equations results in a set of two equations in a matrix
form as follows:

D11 D12
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" #
A

B

" #
¼

0

V0

" #
; ð13Þ

D11 ¼ Ro f1ðkRoÞ � Ri f1ðkRiÞ;

D12 ¼ Ro f2ðkRoÞ � Ri f2ðkRiÞ;
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The unknown constants are determined by obtaining constants A and B from Eq. (13) and
inserting them into the original equations

A ¼ �
V0

D
½Rof2ðkRoÞ � Ri f2ðkRiÞ�; ð15aÞ

B ¼
V0

D
½Rof1ðkRoÞ � Ri f1ðkRiÞ�; ð15bÞ

a ¼
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D
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e
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b ¼
V0

D
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� ½Rof1ðkRoÞ � Ri f1ðkRiÞ�g2ðkRiÞ

�
RiRo ln Ri

e
½ f1ðkRiÞf2ðkRoÞ � f1ðkRoÞf2ðkRiÞ�g; ð15dÞ

where D represents the determinant of the matrix in Eq. (13).
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Resonance occurs when the determinant D is equal to 0:

D 

D11 D12

D21 D22

�����
����� ¼ 0: ð16Þ

Eq. (16) is the characteristic equation representing the resonance of a piezoelectric cylindrical
transducer driven in the radial direction. Meanwhile, the mode shapes of the radial vibration can
be obtained by inserting Eqs. (15a) and (15b) into Eq. (10) and assuming a value of 1 for V0=D for
a relative displacement distribution.

3. Comparison with experiment

The results of the analysis described in the previous section can be verified by calculating the
natural frequencies and comparing them with experimental observations. The unknown variable k
in Eq. (16) can be calculated easily by using a root-finder function (FindRoot) available in
Mathematica [11]. A successful search necessitates a good initial guess, which can be selected by
the elastic natural frequency of a corresponding non-piezoelectric, i.e., elastic, cylinder. Once the
wave number k is evaluated, the natural frequency f is obtained from the following relation:

f ¼
kcL

2p
: ð17Þ

The piezoelectric material selected for the numerical calculation and experiment was PZT
(EC-64), manufactured by EDO Co. The material properties are as summarized in Table 1, and
they are similar to the values reported in other literature [12]. The properties converted in terms of
the expressions in this paper are as in Table 2. Three transducers A, B, and C of different sizes
were used in the research. Their outer radius Ro; inner radius Ri; and thickness T are seen in Table
3. The lengths of the transducers A, B, and C shown in Fig. 2 were 20, 15, and 12 mm;
respectively, but these values were unnecessary in the calculations. The piezoelectric natural
frequencies of the fundamental mode for these transducers shown in Table 3 were calculated from
Eq. (16).

In order to verify the calculated values of the piezoelectric natural frequencies, measurements
were carried out with the piezoelectric circular transducers as shown in Fig. 2. The resonance
frequency of a transducer was measured using the Impedance Gain/Phase Analyzer (HP 4194A).
The measured impedance displayed as a function of the frequency is shown in Fig. 3. The
locations of local minimum impedance in the curve of Fig. 3 represent the piezoelectric natural
frequencies. The measured and calculated piezoelectric natural frequencies are shown in Table 3.

As seen in Table 3 the calculated and measured values agree well with each other. Therefore, the
analysis described in the previous section appeared to explain accurately the vibration
characteristics of piezoelectric cylindrical transducers. Particularly, it could be of use in the
design stage in determining the size of a transducer for a particular frequency.
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4. Discussions

By using the analysis described and verified in the previous sections, numerical calculations
were carried out to determine mode shapes, the effect of the piezoelectricity on the natural
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Table 1

Material properties of a PZT (EDO EC-64)

Properties Values

Mechanical Mass density, r 7500 kg=m3

Elastic compliance, sE
33 0:0150� 10�9 m2=N

Elastic compliance, sE
44 0:0388� 10�9 m2=N

Dielectric Relative permittivity, eS
11=e0 692

Electromechanical Charge constant, d33 0:295� 10�9 C=N

Table 2

Converted properties of a PZT (EDO EC-64)

Properties Values

Mechanical Young’s modulus, E ð¼ 1=sE
33Þ 66:7 GPa

Shear modulus G ð¼ 1=sE
44Þ 25:8 GPa

Poisson ratio, n ð¼ E=2G � 1Þ 0:293
Lam!e constant, l (Eq. (4a)) 36:4 GPa

Dielectric Permittivity of a free space, e0 8:854� 10�12 C2=N m2

Permittivity, e 6:130� 10�9 C2=N m2

Electromechanical Piezoelectric stress constant, 19:67 C=m2

e ð¼ d33=sE
33Þ

(A) (B) (C)

Fig. 2. Photograph of three transducers.
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frequency, and the dependence of the piezoelectric natural frequency on the radius and thickness
of the cylinder.

4.1. Mode shapes

Mode shapes of the radial vibration can be obtained by inserting Eqs. (15a) and (15b) into
Eq. (10) and assuming a value of 1 for V0=D for a relative displacement distribution. The
fundamental mode calculated for transducer A, as seen in Fig. 4, shows a similarity to a rigid-
body mode of a plate.

4.2. Dependence of natural frequency on the cylinder radius

The piezoelectric natural frequency of the fundamental mode was calculated and displayed as a
function of cylinder radius with the solid line in Fig. 5. In addition, the natural frequency of an
elastic cylinder, represented by a dashed line in Fig. 5, is compared with the piezoelectric natural
frequency, represented by a solid line. The thickness of the cylinder was fixed to 2 mm:

The two curves in Fig. 5 coincide, indicating that piezoelectricity does not affect the natural
frequency of the fundamental mode. This phenomenon can be explained by observing that the
natural frequency approaches zero as the radius increases and by considering that the
fundamental mode corresponds to a rigid-body mode of a plate. The mode shape in Fig. 4
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Fig. 3. Impedance curves of the piezoelectric transducers, as measured as a function of frequency; (a) transducer A, (b)

transducer B, (c) transducer C.

Table 3

Comparison of the calculated and measured natural frequencies of the fundamental mode for transducers of three sizes

Transducer Size (mm) Fundamental frequency (kHz)

Outer radius Inner radius Calculated Measured

A 14.3 12.0 37.9 38.8

B 10.05 7.80 56.0 56.3

C 7.10 5.50 79.4 80.8
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supports this speculation. In other words, the fundamental mode has motion without deformation
in the thickness direction of a plate with infinite radius of curvature. Furthermore, its natural
frequency increases as the radius of curvature decreases, with some gradual accompaniment of
deformation.

4.3. Dependence of natural frequency on the cylinder thickness

In order to investigate the dependence of the piezoelectric natural frequency of the fundamental
mode on the thickness of the cylindrical transducer, as shown in Fig. 6 the frequency was
calculated as a function of the thickness for fixed values of the mean radius Rm ð¼ ðRi þ RoÞ=2Þ:
As can be seen, the frequency varies little with the thickness. This trend can be explained by the
observation that the fundamental mode corresponds to a rigid-body mode of no thickness
deformation as mentioned in Sections 4.1 and 4.2.
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Fig. 4. Fundamental mode shape of the radial vibration of transducer A.
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5. Conclusion

The vibrational characteristics of piezoelectric cylindrical transducers were studied by deriving
a characteristic equation for resonance of radial transducers. The piezoelectric natural frequencies
of the transducers were calculated from the theoretical formulae and then compared with
experimental values. This comparison verifies that the theoretical results agree well with the
experimental results.

Numerical results from theoretical analysis provided information about mode shape, the effect
of the piezoelectricity on the natural frequency, and the dependence of the piezoelectric natural
frequency on the radius and thickness of the cylinder. As shown, fundamental mode for a
cylindrical transducer is similar to a rigid-body mode of a plate. The piezoelectric natural
frequency of the fundamental mode was shown to increase as the radius of curvature decreased.
The frequency of the fundamental mode did not depend significantly on the thickness of the
cylinder.
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